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Non-Hermitian delocalization from Hermitian Hamiltonians
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Here we show that using Galilean transformations the non-Hermitian delocalization phenomenon, which is
relevant in different fields, such as bacteria population~e.g., Bacillus subtilis!, vortex pinning in superconduct-
ors, and stability solutions of hydrodynamical problems discovered by Hatano and Nelson@Phys. Rev. Lett.77,
5706 ~1996!#, can be obtained from solutions of the time-dependent Schro¨dinger equation with a Hermitian
Hamiltonian. Using our approach, one avoids the numerical complications and instabilities which result form
the calculations of left and right eigenfunctions of the non-Hermitian Hamiltonian which are associated with
the non-Hermitian delocalization phenomenon. One also avoids the need to replace the non-Hermitian Hamil-

tonianĤ by a supermatrix with twice the dimension ofĤ, where the complex frequencies serve as variational

parameters rather than eigenvalues ofĤ.
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Nelson and co-workers@1–3# and Feinberg and Zee@4#
studied the time evolution of spatial fluctuations in inhom
geneous systems by solving the time-dependent Schro¨dinger-
like equation

Ĥc52
]c

]t
, ~1!

whereĤ is a non-Hermitian ‘‘Hamiltonian’’ andc(x,t) is
the vector of reactants~e.g., species of bacteria, nutrient
etc!. The non-Hermitian ‘‘Hamiltonian’’ is given by

Ĥ52D“

21v•“1V~x!, ~2!

whereV(x) is chosen so thatall growth eigenvalues ofĤ are
positive whenv50. For mobile bacteria,D is an effective
diffusion constant, whereas for superconductor systemD
5(2m)21 and m is the mass of the electron.v is a drift
velocity in studies of water flow in aqueous media, wind
etc., or a non-Hermitian external field originating from t
transverse magnetic field@1#.

To solve Eqs.~1! and ~2! for a square-integrable initia
state,c0[c(x,0), one should use the general definition
the inner product (f ug) rather than the usual definition o
scalar product̂ f ug&. The general definition of the inne
product deals with possibilities of having an incomple
spectrum for non-Hermitian Hamiltonians~see, for example
Ref. @5# about the different possible definitions of a gene
inner product and Ref.@6# about the incomplete spectrum o
non-Hermitian Hamiltonians which are represented by co
plex symmetric matrices!.

An incomplete spectrum of a given non-Hermitian Ham
tonian implies that the eigenfunctions ofĤ do not form a
complete set and that at least one of the eigenfunction
‘‘orthogonal’’ to itself in the sense that (f u f )50. WhenĤ is
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represented by a complex symmetric matrix, then (f ug)
[^ f * ug&. The incompleteness of the spectrum ofĤ leads to
numerical instabilities when Eqs.~1!,~2! are solved numeri-
cally.

As we will show here, Eqs.~1!,~2! can be solved without
the need to solve a non-Hermitian time-depend
Schrödinger-like equation and without the need to introdu
a super-Hermitian matrix which has twice the dimension
Ĥ. When the super-Hermitian matrix is introduced, the co
plex frequency ofĤ is a parameter in the super-Hamiltonia
and not an eigenvalue as in the usual cases. See, for exam
Ref. @7# where this technique has been used for calculat
the spectra of the non-Hermitian Fokker-Plank operator
Ref. @8# where the complex scaling method for the calcu
tion of the complex resonance eigenvalues is reviewed.

We will show that the solution of Eq.~1!, c(x,t), can be
associated with the solutions of an eigenvalue problem
Hermitian Hamiltonians and all numerical operations invol
only multiplications ofHermitian matrices.

The solutionc(x,t) can be given by

c~x,t !5exp~2tv•“ !f~x,t !, ~3!

where,

c~x,0!5c0~x! ~4!

andf(x,t) is in L2 ~i.e., a square-integrable function! in any
given timet. In contrast to the imaginary gauge transform
tion which has been used before@1–3#, the transformation
we use here, exp(2tv•“), is a unitary transformation and
has a physical interpretation.

By substituting Eqs.~3! and ~2! into Eq. ~1!, one obtains

@2D“

21V~x1vt !#f~x,t !52
]

]t
f~x,t !. ~5!
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Here we used the fact that exp(2tv•“) is a translation op-
erator which commutes with the kinetic operator2D¹2.
Specifically,

V~x!exp~2tv•“ !f~x!5V~x!f~x2vt ! ~6!

and, therefore,

exp~1tv•“ !V~x!exp~2tv•“ !f~x!5V~x1vt !f~x!.
~7!

The solutions of Eq.~5! can be described as

f~x,t !5 (
n50

`

e2«ntxn~ t !wn~x1vt !. ~8!

By substituting Eq.~8! into Eq. ~3!, the desired solution o
Eq. ~1! is given by

c~x,t !5 (
n50

`

e2«ntxn~ t !wn~x!. ~9!

The functionswn and the decay constants«n are, respec-
tively, the eigenfunctions and eigenvalues of the tim
independent Schro¨dinger equation,

Ĥ0wn5«nwn , ~10!

whereĤ0 is a Hermitian time-independent Hamiltonian,

Ĥ052D¹21V~x!. ~11!

The oscillating time-dependent functionsxn(t) are the com-
ponents of the vector solution of the following linear matr
problem:

B~ t !x~ t !5 i
]

]t
x~ t !, ~12!

where

Bm,n~ t !52 ie2~«n2«m!t^wmuv•“uwn& ~13!

and

xn~0!5^wnuc0&, n51,2, . . . . ~14!

The proof of Eqs.~12! and ~13! is simple. By substituting
Eq. ~8! into Eq. ~5!, one obtains

2 (
n50

`

e2«nt
]xn~ t !

]t
wn~z!5 (

n50

`

e2«ntxn~ t !
]wn~z,t !

]t
,

~15!

where

z5x1vt. ~16!

Let us multiply Eq.~15! from the left withwm* (z) and carry
out the integration overx. Since

^wm~x1vt !uwn~x1vt !&5^wnuxuwm~x!&5dm,n , ~17!
04110
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we obtain that

2e2«mt
]xm~ t !

]t
dm,n5(

n
e2«ntxn~ t !

3 K wm~x1vt !U ]

]tUwn~x1vt !L .

~18!

Using the fact that

]z

]t
5v, ~19!

we get

K wm~x1vt !U ]

]tUwn~x1vt !L 5^wm~x!uv•“uwn~x!&

~20!

and Eqs.~12! and ~13! are immediately obtained.
Let us return now to the desired solution as given in E

~9!. The unknown coefficientsxn(t) are solutions of Eq.
~12!, which can be solved by realizing that

B~ t !5D21~ t !AD~ t !, ~21!

where D(t)5e2Et and E is the diagonal matrixEm,n

5«ndm,n which contains the eigenvalues«n of Ĥ0 . The ma-
trix A is a time-independent Hermitian matrix with the m
trix elementsAm,n52 i ^wmuv•“uwn&. Using the commuta-
tor relation “52@Ĥ0 ,x#/2D, we can expressA as A
(ava(EX(a)2X(a)E)/2D, where Xm,n

(a) 5^wmuxauwn&, a

51,...,3. Since the eigenfunctionswn of Ĥ0 are real,X is
real andiA is a real and antisymmetric matrix.

With the help of Eq.~21!, we can rewrite Eq.~12! as

S 2 iD~ t !
]

]t
D21~ t !1ADD~ t !x~ t !50 ~22!

and, consequently,

S 2 i
]

]t
1A2 iEDD~ t !x~ t !50. ~23!

Since A2 iE is a time-independent matrix, the solution
Eq. ~23! is given by

x~ t !5D21~ t !e2 i ~A2 iE!tx~0!, ~24!

wherex(0) is obtained by projecting the initial state onto th
eigenfunctions of the unperturbed HamiltonianĤ0 . The de-
sired solution of Eq.~9!,

c~x,t !5@w~x!# tD~ t !x~ t !, ~25!

is immediately obtained by substituting Eq.~24! into Eq.
~25!,

c~x,t !5@w~x!# te2~E1 iA!tx~0!, ~26!
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where@w(x)# t is the transposed vector ofw(x), i.e., a vector
function with the eigenfunctionswn(x) of the unperturbed
HamiltonianĤ0 as components.

Since iA is a real and antisymmetric, the matrixE1 iA
appearing in the exponent in Eq.~26! is also a real matrix.Its
eigenvalues are the eigenvalues of the non-Hermitian Ha

tonian Ĥ given in Eq. (2). This approach enables us to stu
the delocalization in general systems in a rather simple w
as follows.

~1! Calculate the eigenvalues and eigenfunctions ofĤ0
@see Eq.~11!#.

~2! Use these eigenfunctions as a basis set in the ma
representation of the operatorx; i.e., calculate the matrix
Xm,n5^wmuxuwn&.

~3! Calculate the eigenvalues and eigenvectors of the
matrix E2(a51

3 va(EX(a)2X(a)E)/2D as a function ofv.
This approach allows a straightforward treatment of d

ferent type of model systems and also provides a metho
analyze the problem on an abstract level with appropria
chosen matricesE andX.

It is easy to get the conditions for the delocalization ph
nomenon from Eq.~26!. For the sake of simplicity and with
out loss of generality, let us assume that the drift velocity
in one dimension only, i.e.,v•“5v•]x . As an initial state,
we take the ground state of the unperturbed HamiltonianĤ0 ,
i.e., c(x,t50)5w0(x). We carry out a small time-ste
od

04110
il-

y

ix

al

-
to
ly

-

s

propagation and expand Eq.~26! for sufficiently small time
stept in a Taylor series expansion. In such a case the s
tion is approximately given by

c~x,t!5w0~x!2tS «0w02
v

2D (
n50

`

~«n2«0!Xn,0wn~x!D ,

~27!

whereXn,05^wnuxuw0&. From Eq.~27! one can see immedi
ately that delocalization is obtained whenvXn,0(«n
2«0)/2D.«0 . Namely, the perturbation strength parame
v should be large enough to couple ‘‘all’’ states. Approx
mating Xn,0 by the localization lengthj and skipping the
factor («n2«0)/2«0 , we deduce the delocalization conditio
j.D/v in agreement with the results of@2#.

Our approach is equivalent to the time-independent
proach using the eigenfunctions of the unperturbed Ham
tonian as a basis set. However, the Galilean transforma
provides additional insight to the problem.

This work was supported in part by the Israel-U.S. Bin
tional Science Foundation, by the Israeli Academy of S
ences, and by the Fund of promotion of research at the Te
nion. Dr. Nadav Shnerb and Professor Jurgen Korsch
acknowledged for fruitful discussions and Professor Da
Nelson for his comments.
in
@1# N. Hatano and D. R. Nelson, Phys. Rev. Lett.77, 570 ~1996!;
Phys. Rev. B56, 8651~1997!; 58, 8384~1998!.

@2# D. R. Nelson and N. M. Shnerb, Phys. Rev. E58, 1383~1998!.
@3# N. M. Shnerb and D. R. Nelson, Phys. Rev. Lett.80, 5172

~1998!.
@4# J. Feinberg and A. Zee, Phys. Rev. E59, 6433~1999!.
@5# The Letropet Symposium View on a Generalized Inner Pr
 -

uct, edited by E. Bra¨ndas and N. Elander, Lecture Notes
Physics Vol. 325~Springer, Berlin, 1998!.

@6# N. Moiseyev and S. Friedland, Phys. Rev. A22, 618 ~1980!.
@7# J. T. Chalker and Z. Jane Wang, Phys. Rev. Lett.79, 1797

~1997!.
@8# N. Moiseyev, Phys. Rep.302, 211 ~1998!.
3-3


