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Non-Hermitian delocalization from Hermitian Hamiltonians
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Here we show that using Galilean transformations the non-Hermitian delocalization phenomenon, which is
relevant in different fields, such as bacteria populat®g., Bacillus subtilis vortex pinning in superconduct-
ors, and stability solutions of hydrodynamical problems discovered by Hatano and [\fels@ Rev. Lett77,
5706(1996], can be obtained from solutions of the time-dependent Sager equation with a Hermitian
Hamiltonian. Using our approach, one avoids the numerical complications and instabilities which result form
the calculations of left and right eigenfunctions of the non-Hermitian Hamiltonian which are associated with
the non-Hermitian delocalization phenomenon. One also avoids the need to replace the non-Hermitian Hamil-
tonian’ by a supermatrix with twice the dimension &t where the complex frequencies serve as variational
parameters rather than eigenvalues-of
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Nelson and co-workergl—3] and Feinberg and Zefgl]  represented by a complex symmetric matrix, thefhg)

studied the time evolution of spatial fluctuations in inhomo-E<f*|g>. The incompleteness of the spectrunfoieads to
geneous systems by solving the time-dependent Sotger-  numerical instabilities when Eqél),(2) are solved numeri-

like equation cally.
As we will show here, Eq9.1),(2) can be solved without
Flp=— (9_‘/’ 1) the need to solve a non-Hermitian time-dependent
at’ Schralinger-like equation and without the need to introduce

. a super-Hermitian matrix which has twice the dimension of
where is a non-Hermitian “Hamiltonian” andj(x,t) is  #. When the super-Hermitian matrix is introduced, the com-

the vector of feaCt?‘_”tee;Q-’ SPecies E)f, bapterla, nutrients, plex frequency ofH is a parameter in the super-Hamiltonian
etg. The non-Hermitian “Hamiltonian” is given by and not an eigenvalue as in the usual cases. See, for example,
- 5 Ref. [7] where this technique has been used for calculating
H=-DV7+v-V+V(x), @ the spectra of the non-Hermitian Fokker-Plank operator and
. Ref. [8] where the complex scaling method for the calcula-
whereV(x) is chosen so thatll growth eigenvalues dft are  tion of the complex resonance eigenvalues is reviewed.
positive whenv=0. For mobile bacteriaD is an effective We will show that the solution of Eq1), #(x,t), can be
diffusion constant, whereas for superconductor systbms associated with the solutions of an eigenvalue problem of
=(2m)~! and m is the mass of the electron. is a drift  Hermitian Hamiltonians and all numerical operations involve
velocity in studies of water flow in aqueous media, winds,only multiplications ofHermitian matrices.
etc., or a non-Hermitian external field originating from the  The solutiony(x,t) can be given by
transverse magnetic fie[d].
To solve Egs.(1) and (2) for a square-integrable initial
state, o= 1(x,0), one should use the general definition of
the inner product f{{g) rather than the usual definition of
scalar product(f|g). The general definition of the inner where,
product deals with possibilities of having an incomplete
spectrum for non-Hermitian Hamiltoniarisee, for example, #(x,0) = (%) (4
Ref. [5] about the different possible definitions of a general
inner product and Ref6] about the incomplete spectrum of o ) ] )
non-Hermitian Hamiltonians which are represented by comand#(x,t) is in £, (i.e., a square-integrable functjoim any
plex symmetric matrices given timet. In contrast to the imaginary gauge transforma-
An incomplete spectrum of a given non-Hermitian Hamil- tion which has been used befofe-3], the transformation
tonian implies that the eigenfunctions #f do not form a V€ US€ here, exp(tv-V), is a unitary transformation and

. - has a physical interpretation.
complete set ar.1d thgt at least one of the elgenfunAct.|ons E By substituting Eqs(3) and (2) into Eq. (1), one obtains
“orthogonal” to itself in the sense thaf {f ) =0. WhenX is

P(x,t)=exp —tv- V) d(x,t1), 3)

Jd
—DV2+V(x+ =—— :
*Electronic address: nimrod@tx.technion.ac.il [ v (x+V)]b(x.1) ot $(x0) ®)
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Here we used the fact that expifv- V) is a translation op-
erator which commutes with the kinetic operateD V2.
Specifically,

V(x)exp(—tv- V) ¢(X) = V(X) p(X—vt) (6)
and, therefore,
exp+tv- V)V(X)exp(—tv- V) ¢p(X) =V(Xx+vt) p(X).
(7
The solutions of Eq(5) can be described as
B0 =2, e (B @p(xH V). ®)

By substituting Eq(8) into Eq. (3), the desired solution of
Eq. (1) is given by

w<x,t>=n§) e ity n(t) en(X). (9)

The functionse,, and the decay constants, are, respec-
tively, the eigenfunctions and eigenvalues of the time
independent Schdinger equation,

(10)

Hoon=enen,

WhereI:|O is a Hermitian time-independent Hamiltonian

Ho=—DV2+V(x). (1D

The oscillating time-dependent functiogg(t) are the com-
ponents of the vector solution of the following linear matrix
problem:

BOX(1) =1 - x(1), (12)
where
Bimn(t)=—ie~n*m o |v- V]ep) (13
and
xn(0)=(e@nltpo), N=12,.... (14

The proof of Eqs(12) and (13) is simple. By substituting
Eq. (8) into Eq. (5), one obtains

—ent 2Xn) Xn(t) 5(,Dn(Z t)

—E E ey, ()

@n(
(15
where

Z=X+Vt. (16)

Let us multiply Eq.(15) from the left with ¢,(2z) and carry

out the integration ovex. Since
<‘Pm(X+Vt)|‘Pn(X+Vt)> <‘Pn|x|§0m(x > (17)

mﬂl
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we obtain that

_ . Oxm(t) _
—e em (;; 5m,n:§ e EntXn(t)
Jd
<(pm(X+Vt) (pn(x+vt)>
(18)
Using the fact that
&Z_ 19
E_Vi ( )
we get
Jd
(Pm(X+Vt) (Pn(X+Vt :<(pm(X)|V'V|(pn(X)>
(20)

and Egs(12) and(13) are immediately obtained.

Let us return now to the desired solution as given in Eq.
(9). The unknown coefficienty,(t) are solutions of EQq.
(12), which can be solved by realizing that

B(t)=D"(t)AD(t), (22)

where D(t)=e ' and E is the diagonal matrixEp,
= &,8mn Which contains the eigenvalueg of Hy. The ma-
trix A is a time-independent Hermitian matrix with the ma-
trix elementsAy, ,=—i{¢m|V- V]ey,). Using the commuta-
tor relation V=—[H,,x]/2D, we can expresA as A
3 U (EX@D=X@E)/2D, where X{)=(@m|X.len),
=1,...,3.Since the eigenfunctiong, of H, are real X is
real andiA is a real and antisymmetric matrix.

With the help of Eq(21), we can rewrite Eq(12) as

(2%

(—iD(t)%Dl(t)nLA D(t) x(t)= (22
and, consequently,
(—i%+A—iE D(t) x(t)=0. (23

Since A—iE is a time-independent matrix, the solution of
Eq. (23) is given by

x(H)=D"Y(t)e ' A1Ey(0), (24)

wherey(0) is obtained by projecting the initial state onto the

eigenfunctions of the unperturbed Hamiltonila@. The de-
sired solution of Eq(9),

P(x,1)=[o(x)]'D(t) x(1),

is immediately obtained by substituting E(R4) into Eg.
(25),

=[ (X (25)

P(x,H=[e(x)]'e” EMVY(0), (26)
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where[ ¢(x)]' is the transposed vector @{x), i.e., a vector propagation and expand E®6) for sufficiently small time
function with the eigenfunctiong,(x) of the unperturbed steprin a Taylor series expansion. In such a case the solu-

HamiltonianH, as components. tion is approximately given by
SinceiA is a real and antisymmetric, the matiftiA
appearing in the exponent in E@6) is also a real matrixts
e|genvalues are the eigenvalues of the non-Hermitian Hamil- (X, 7) = ¢¢(X) — 7| €gg— 2D E (en—&0)Xno@n(X) |,

tonian H given in Eq. (2) This approach enables us to study 27)
the delocalization in general systems in a rather simple way
as follows.

(1) Calculate the eigenvalues and eigenfunctiondigf Wh?rexﬂy():(éonlxhp?). From _Eq.(2b7) (_)nedcanhsee)émmedl-
[see Eq(11)] ately that delocalization is obtained whenX, (s,

£9)/2D>¢,. Namely, the perturbation strength parameter

2) Use these eigenfunctions as a basis set in the matrlx
(2 g should be large enough to couple “all” states. Approxi-

representation of the operatar i.e., calculate the matrix o
Xp =(omlXl@n) P f matlng Xno by the localization lengtht and skipping the
m,n m n/-

(3) Calculate the eigenvalues and eigenvectors of the re%ﬁaor (en—&0)/22,, we deduce the delocalization condition
matrix E— 23 _ v (EX{¥—X(¥E)/2D as a function of. >D/v in agreement with the results {2].

This approach allows a straightforward treatment of dif- Our approach is equivalent to the time-independent ap-
ferent type of model systems and also provides a method zEroach using the eigenfunctions of the unperturbed Hamil-

analyze the problem on an abstract level with appropriatel Orrc;l\%geisaz d?gcsmlr?alsfrréiHr?tV\{gvtire’ thrib?earlr']lean transformation
chosen matriceE andX. 9 p -
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nomenon from Eq(26). For the sake of simplicity and with- tipnal Science Foundation, by the Israeli Academy of Sci-
out loss of generality, let us assume that the drift velocity isences, and by the Fund of promotion of research at the Tech-
in one dimension only, i.ey-V=v-dy. As an initial state, njon. Dr. Nadav Shnerb and Professor Jurgen Korsch are
we take the ground state of the unperturbed Hamiltohign ~ acknowledged for fruitful discussions and Professor David
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